
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

4-2012

Improving Backup and Restore Performance for
Deduplication-based Cloud Backup Services
Stephen Mkandawire
University of Nebraska – Lincoln, smkandawire@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Mkandawire, Stephen, "Improving Backup and Restore Performance for Deduplication-based Cloud Backup Services" (2012).
Computer Science and Engineering: Theses, Dissertations, and Student Research. 39.
http://digitalcommons.unl.edu/computerscidiss/39

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/39?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

IMPROVING BACKUP AND RESTORE PERFORMANCE FOR

DEDUPLICATION-BASED CLOUD BACKUP SERVICES

by

Stephen Mkandawire

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Hong Jiang

Lincoln, Nebraska

April, 2012

www.manaraa.com

IMPROVING BACKUP AND RESTORE PERFORMANCE FOR

DEDUPLICATION-BASED CLOUD BACKUP SERVICES

Stephen Mkandawire, M.S.

University of Nebraska, 2012

Advisor: Hong Jiang

The benefits provided by cloud computing and the space savings offered by data

deduplication make it attractive to host data storage services like backup in the cloud.

Data deduplication relies on comparing fingerprints of data chunks, and store them in the

chunk index, to identify and remove redundant data, with an ultimate goal of saving

storage space and network bandwidth.

However, the chunk index presents a bottleneck to the throughput of the backup

operation. While several solutions to address deduplication throughput have been

proposed, the chunk index is still a centralized resource and limits the scalability of both

storage capacity and backup throughput in public cloud environments. In addressing this

challenge, we propose the Scalable Hybrid Hash Cluster (SHHC) that hosts a low-latency

distributed hash table for storing fingerprints. SHHC is a cluster of nodes designed to

scale and handle numerous concurrent backup requests while maintaining high

fingerprint lookup throughput. Each node in the cluster features hybrid memory

consisting of DRAM and Solid State Drives (SSDs) to present a large usable memory for

storing the chunk index. Our evaluation with real-world workloads shows that SHHC is

www.manaraa.com

consistently scalable as the number of nodes increases. The throughput increases almost

linearly with the number of nodes.

The restore performance over the relatively low bandwidth wide area network

(WAN) links is another drawback in the use of cloud backup services. High speed

network connectivity is either too expensive for most organizations or reserved for

special applications. Removing redundant data before transmitting over the WAN offers a

viable option to improve network throughput during the restore operation. To that end,

we propose Application-Aware Phased Restore (AAPR), a simple restore solution for

deduplication-based cloud backup clients. AAPR improves restore time by removing

redundant data before transmitting over the WAN. Furthermore, we exploit application

awareness to restore critical data first and thus improve the recovery time. Our

evaluations show that, for workloads with high redundancy, AAPR reduces restore time

by over 85%.

www.manaraa.com

iv

ACKNOWLEDGEMENTS

I would like to express my thanks first and foremost to the Almighty God without whom

all this is meaningless.

I would like to deeply thank my advisor, Dr. Hong Jiang, for his support and

guidance. Thank you for being patient with me and guiding me not only academically but

also on other natters of life. In you I found a true mentor and it’s an honor and privilege

to be advised by you. I would like to thank Dr. David Swanson and Dr. Lisong Xu for

serving on my committee and for the knowledge you have imparted to me. Thank you for

reading my draft thesis and all the suggestions.

To my loving wife, Nyambe, thank you for your support, your love, patience and

understanding. Your sacrifice is priceless. To my son Wezi and daughter Tabo, thank you

for your sacrifice and putting up with daddy’s busy schedule.

I would like to thank Lei Xu and Jian Hu with whom I worked on the hybrid

cluster. Thank you Lei for all the tips and help in debugging my code throughout this

work. Special thanks to all members of the Abacus Distributed Storage Lab for your

contributions and support. You are a great family to me.

To my friends and family at large, thank you so much for your prayers and support.

Special thanks to all the academic and administrative staff the computer science

engineering department at UNL for your support and the knowledge I have gained.

www.manaraa.com

v

Table of Contents

List of Figures ... vii

List of Tables ... viii

1 Introduction ... 1

1.1 Cloud Storage and Data Deduplication ... 1

1.2 Scope of the thesis ... 7

1.2.1 Chunk index scalability and throughput ... 7

1.2.2 Client side restore performance ... 7

1.3 Main Contributions of the thesis ... 8

1.4 System Assumptions ... 9

1.5 Thesis outline .. 10

2 Background and Motivation ... 11

2.1 Scalable chunk index throughput for deduplication based cloud backup

services .. 11

2.2 Restore performance for WAN connected deduplication-based cloud

backup clients .. 16

3 SHHC: A Scalable Hybrid Hash Cluster for Cloud Backup Services 21

3.1 Introduction ... 21

3.2 Design and Implementation .. 22

3.2.1 Overall Architecture .. 22

3.2.1.1 Client application ... 24

3.2.1.2 Web front-end cluster .. 25

3.2.1.3 Hybrid hash cluster .. 25

3.2.1.4 Cloud storage service ... 26

3.2.2 The hybrid hash cluster ... 26

3.3 Evaluation .. 29

3.3.1 Experiment setup and datasets .. 30

3.3.2 Scalability and performance .. 31

www.manaraa.com

vi

3.3.3 Load balancing .. 32

3.4 Summary ... 33

4 AAPR: Application-Aware Phased Restore ... 35

4.1 Introduction ... 35

4.1.1 Eliminating redundant data in restore datasets 36

4.1.1.1 File Recipes ... 36

4.1.1.2 File set redundancy .. 39

4.1.1.3 Unique hash store .. 41

4.1.1.4 Application awareness ... 41

4.1.1.5 Categorizing application awareness 42

4.2 Design and Implementation .. 43

4.2.1 AAPR client .. 44

4.2.1.1 Backup agent ... 44

4.2.1.2 Recipe store ... 46

4.2.1.3 Application awareness module (AA Module) 46

4.2.1.4 Restore agent ... 47

4.2.1.5 Unique hash store .. 48

4.2.1.6 Local chunk store ... 48

4.2.2 Server .. 48

4.3 Evaluation .. 49

4.3.1 Experiment setup and datasets .. 49

4.3.2 Restore time ... 50

4.4 Summary ... 57

5 Conclusions ... 59

Bibliography ... 61

www.manaraa.com

vii

List of Figures

Figure 1.1: Overview of cloud computing. ... 2

Figure 2.1: Overview of data deduplication ... 12

Figure 2.2: Throughput of fingerprint lookup operations ... 15

Figure 3.1: Overall architecture of the cloud-based back-up service 24

Figure 3.2: Hash node memory layout .. 27

Figure 3.3: Flowchart of an SHHC lookup operation ... 29

Figure 3.4: Scalable throughput .. 32

Figure 3.5: Hash distribution .. 33

Figure 4.1: Sample file recipe ... 38

Figure 4.2: Intra-file set redundancy ... 40

Figure 4.4: AAPR System Architecture.. 44

Figure 4.5: Restore performance for different workloads .. 53

Figure 4.6: Data transferred over the WAN .. 55

Figure 4.7: Comparison of AAPR and CABdedupe schemes – Linux workload 56

Figure 4.8: Comparison of AAPR and CABdedupe schemes – Virtual machines 57

www.manaraa.com

viii

List of Tables

Table 3.1: SHHC Workload characteristics .. 30

Table 4.1: Relationship of total recipe size to the dataset size ... 38

Table 4.2: Redundancy in single files ... 39

Table 4.3: AAPR Workload Characteristics ... 50

www.manaraa.com

1

Chapter 1

Introduction

1.1 Cloud Storage and Data Deduplication

Cloud computing is a computing paradigm in which hosted services are delivered to the

user over a wide area network (WAN) using standard Internet protocols. The term

“cloud” was coined from the use of the cloud symbol in network diagrams to represent a

section in the Internet [6]. In such diagrams the cloud abstracts the details of that part of

the network in order to, in most cases, present a view that is focused on the services

provided by the cloud part of the network. Several distinctive features differentiate a

cloud service from a traditional hosted service. Firstly, a cloud service is sold on demand,

usually with pay-per-use or subscription model. In pay-per-use, the user only pays for

how much of the services they use, for example, only the number of bytes transferred.

Secondly, a cloud service is elastic – at any given time a user can get as little or as much

as they need. The third differentiating feature is that a cloud service is fully managed by

the service provider - the user only needs network connectivity to the service and enough

local resources to use the service. The local resources vary depending on the type of

service but can be as simple as a mobile smart phone. In the cloud business model service

level agreements (SLA) make the provider accountable for the quality and reliability of

www.manaraa.com

2

the service. This does not only protect the interests of the client but also clearly spells out

exceptions between the parties to the agreement.

Examples of services hosted in the cloud include infrastructure services like servers

and data storage. The others are platform and software services. Platform services include

software and product development tools, whereas software services (software

applications) encompass such services as web-based email and database processing.

Figure 1.1 shows an overview of cloud computing (adapted from [33]).

Tablets

Desktops

Servers

Laptops

Phones

Compute

Block Storage
Network

Infrastructure

Platform

Application

NEWS

Content Communication

Object Storage

Collaboration

Identity

0

10

20

30

40

50
60

70

80

90

100

110

1202
1

123450

3

4
5
6 7 8

EF

Monitoring

Runtime
Queue

Database

Finance

Figure 1.1: Overview of cloud computing.

www.manaraa.com

3

Given the amount of data being generated annually and the need to leverage good

storage infrastructure and technologies, data storage emerges as one of the top cloud

computing services. In their 2010 digital universe study, IDC indicated that by 2020, the

amount of digital information created and replicated will grow to over 35 trillion

gigabytes. Further, the report indicates that a significant portion of digital information

will be centrally hosted, managed, or stored in public or private repositories that today we

call “cloud services” [3]. The 2011 digital universe study predicted that that in 2011

alone, the amount of digital information created and replicated would be more that 1.8

zettabyte (1.8 trillion gigabytes).

To process and protect such amounts of data efficiently, it is important to employ

strategies such as data deduplication to improve both storage capacity and network

bandwidth utilization. Further, for most organizations, especially small to medium

businesses (SMBs), hosting such services in a public cloud proves to be more economical

and efficient. In data deduplication, duplicate data is detected and only one copy of the

data is stored, along with references to the unique copy of data, thus removing redundant

data. Data deduplication can be performed at three levels, file level, block level (also

called chunk level) and byte level, with chunk level being the most popular and widely

deployed. For each of these deduplication types, files, data blocks or bytes are hashed and

compared for redundancy detection. In general, there are four main steps in chunk level

data deduplication, chunking, fingerprinting, index lookup and writing.

(i) Chunking - during the chunking stage, data is split into chunks of non-overlapping

data blocks. The size of the data block can be either fixed or variable depending

www.manaraa.com

4

on the chunking method used. The Fixed Size Chunking (FSC) method is used in

the case of fixed data blocks, whereas the common method used to produce

variable sized chunks is Content Defined Chunking (CDC).

(ii) Fingerprinting - using a cryptographic hash function (e.g., SHA-1), a fingerprint

is calculated for each chunk produced from the chunking phase.

(iii) Index lookup – A lookup table (chunk index) is created containing the fingerprints

for each unique data chunk. A lookup operation is performed for each fingerprint

generated in step (ii) to determine whether or not the chunk is unique. If the

fingerprint is not found in the lookup table, it implies that the data chunk is

unique. The fingerprint is thus inserted in the table and the chunk is written to the

data store in step (iv).

(iv) Writing – all unique data chunks are written to the data store.

Each chunk stored on the storage system using chunk-based deduplication has a

unique fingerprint in the chunk index. To determine whether a given chunk is a duplicate

or not, the fingerprint of the incoming data chunk is first looked up in the chunk index.

Existence of a matching fingerprint (i.e., hash) in the index indicates that an identical

copy of the incoming chunk already exists (i.e., has been stored earlier) and the system

therefore only needs to store a reference to the existing data. If there is no match, the

incoming chunk is unique and is stored on the system and its fingerprint inserted in the

chunk index accordingly. Deduplication can be performed either ‘inline’ as the data is

entering the storage system/device in real time, or as a ‘post-process’ after the data has

www.manaraa.com

5

already been stored. Inline data duplication uses less storage space as the duplicate data is

detected in real time before the data is stored.

Deduplication based cloud backup emerges as a suitable way of backing up huge

amounts of data due to the advantages offered by both cloud computing and data

deduplication. The customer can leverage the storage infrastructure offered by the cloud

provider, whereas deduplication makes it possible for cloud provider to reduce storage

capacity and network bandwidth requirements and optimize storage and networks.

Backups benefit even more from deduplication because of the significant redundancy that

exists between successive full backups of the same dataset.

While deduplication based cloud backup presents a good backup solution, it has

its own shortcomings, with the major one being that of throughput. There are two

important metrics that can be used in evaluating the performance of a backup system –

the backup window (BW) and recovery time objective (RTO). The backup window is the

period of time in which backups are allowed to run and complete on a system, whereas

RTO is the amount of time between when a disaster happened and the time the business

functions are restored. In this thesis, we address two main problems faced by

deduplication based cloud backup systems. Firstly, the chunk index and associated

fingerprint lookups present a bottleneck to the throughput and scalability of the system.

And secondly, the constrained network bandwidth has a negative impact on the RTO.

(i) Throughput and scalability of chunk index (fingerprint store) and fingerprint

lookup: during the backup operation, duplicate data is determined by first

www.manaraa.com

6

consulting the chunk index. For a lager data set, it’s not possible to store the

whole index in RAM, forcing the index lookup to go to the disk and incurring

disk I/O penalties. The system incurs longer latency as a result of the costly disk

I/O. Furthermore, in a public cloud environment, the system has to handle

hundreds of thousands of concurrent backup clients, thereby putting additional

pressure on the throughput and scalability of the backup system.

(ii) The constrained bandwidth challenge: backup is not the primary goal of a backup

system but the means to the goal, which is the ability to restore the backed up data

in a timely manner when it’s needed. A recent study [7] indicates that 58% of

SMB cannot tolerate more than 4 hours of down time before they start

experiencing negative effects on the business. A recent survey [8] indicates that

87% of enterprises rank the ability to recover data in a quick and effective way to

be very important. However, low bandwidth WAN links present a challenge to

cloud backup services that are expected to provide fast data restorations. It is

therefore important to devise and employ methods of restoring data that increase

the effective throughput of the data restore process.

We describe these problems in some details in our research motivation in the next

chapter and present our proposed solutions in chapters 3 and 4 respectively.

www.manaraa.com

7

1.2 Scope of the thesis

This thesis aims to improve both the backup and restore performances for duplication-

based cloud backup services by addressing the issue of chunk index lookup bottleneck

and by employing a method that does not transmit redundant data during the restore

process.

1.2.1 Chunk index scalability and throughput

The server side maintains a chunk index that keeps chunk metadata. It is a key-value

index mapping a fingerprint to, among other things, the location where the chunk is

stored in the backend storage. In our solution to improve backup performance we focus

only on the chunk index (hash store) and the fingerprint lookup process. The proposed

solution can interface with any backend cloud storage using appropriate APIs.

1.2.2 Client side restore performance

Strategies to improve restore performance in deduplication-based cloud storage can be

applied either on the server side or the client side. In this thesis we focus on improving

restore performance from the client side. Duplicate data exists within backup data sets

and therefore, we can improve the RTO by only requesting non-duplicate data chunks

from the cloud. In order to do this, metadata for files that are backed up are maintained in

file recipes used at the time of restore to generate unique hashes for a given restore data

set. Further we apply application awareness to restore critical data first.

www.manaraa.com

8

1.3 Main Contributions of the thesis

This thesis makes the following contributions

(i) Various schemes have been proposed to address the fingerprint lookup bottleneck

problem and the associated disk I/O cost that results from having to access a large

chunk index. However, none implements a distributed chunk index in a scalable

cluster as a way of improving throughput and scalability. We propose a Scalable

Hybrid Hash Cluster (SHHC) to maintain a low-latency distributed hash table for

storing hashes. It is a distributed hash store and lookup service that can scale to

handle hundreds of thousands of concurrent backup clients while maintaining

high fingerprint lookup throughput. Results show that the hash cluster is

consistently scalable as the number of nodes increases.

(ii) To improve restore performance, we propose Application-Aware Phased Restore

(AAPR). AAPR is intended to be simple, effective and loosely coupled from the

server. AAPR employs the concept of file recipes [5] to generates a set of unique

hashes for a given restore data set. By transmitting only unique hashes over the

WAN link, the restore time is improved. File recipes also help in the

reconstruction of each file at the client side and to keep a loose coupling between

the client and the server. We further apply application awareness to phase restore

operations with critical data being recovered first.

www.manaraa.com

9

1.4 System Assumptions

Our proposed hash cluster considers a public cloud scenario in which a cloud backup

service serves hundreds of thousands of concurrent hash requests coming from different

clients. This is a typical characteristic of a public cloud environment especially with the

proliferation of mobile personal computing. In view of that, we further assume that the

data sets stored in the backend storage will be very large (Petabyte scale). The system

employs source deduplication in which all the chunking and hash generation is done at

the client side. We further assume that the backup and restore operations are not taking

place simultaneously. In real world systems, the cloud provider serves many different

users and therefore, some users may be backing up while others may be in need of restore

at the same time. Solutions to handle such situations would, among others, include

scheduling and prioritizing restore traffic in the backend storage. Expected services can

also be outlined in service level agreements. Our implementation uses chunk-based

deduplication using the fixed size chunking algorithm. Furthermore, fault tolerance and

availability of the hash cluster are out of the scope of this work.

The restore solution assumes the client data has already been backed up and exists

at the server side. We generate file recipes at the time of backup and these are maintained

by the user. A backup of the recipes can be kept in the cloud and downloaded if the local

copy is not available. The local copy of recipes can be maintained on any offline media

e.g. optical media or pen drive. This is possible because the size of file recipes is small

and most organizations already have strategies to maintain backups on offline media.

www.manaraa.com

10

1.5 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 presents our motivation

and reviews related work. Chapter 3 presents the scalable hybrid hash cluster. In chapter

4 we describe the application awareness restore solution and we present our conclusions

in chapter 5.

www.manaraa.com

11

Chapter 2

Background and Motivation

In the previous chapter we introduced two challenges facing deduplication-based cloud

backup services. In this chapter, we briefly present the background on existing research

most relevant to the two challenges to motivate our research. In section 2.1, we describe

the related work on and discuss our research motivation for scalable chunk index

throughput for deduplication-based cloud backup services. Section 2.2 discusses existing

work and motivates our study on improving restore performance for clients connected to

deduplication-based cloud backup services via WAN.

2.1 Scalable chunk index throughput for deduplication

based cloud backup services

In a deduplication system, fingerprints for all unique chunks stored in the storage system

are maintained in a chunk index, usually a key/value hash table with the hash as the key

and other chunk metadata as the value. When a new data stream arrives in the system, it

is chunked using either the fixed-size chunking (FSC) or content-defined-chunking

(CDC) algorithm to generate individual data chunks that are then fingerprinted by

hashing (e.g., SHA-1). FSC, as employed in storage systems such as Venti [32], produces

non-overlapping fixed-size data blocks, whereas CDC, used in systems like LBFS [15],

www.manaraa.com

12

uses data content to produce variable-sized chunks. For each new data chunk, its

fingerprint is checked against the chunk index in order to determine whether the new data

chunk is a duplicate or not. Figure 2.1 shows an overview of the deduplication process.

The chunk index and the associated lookup operations lie in the critical path of the

deduplication process and present a bottleneck to the whole deduplication process and

hence the backup service. In this thesis we refer to the server where the chunk index is

stored as the ‘hash node’.

New data

stream

1. Chunking

Fixed-size chunking (FSC)

Content defined chunking (CDC)

Whole-file chunking (WFC)

Data chunks
SHA-1

MD5

2. Fingerprinting

Data chunks + fingerprints

Chunk index

(Hash table)

Chunk index

(Hash table)

3. Index lookup

Unique data

 chunks

4. Writing

Storage

Figure 2.1: Overview of data deduplication

Keeping the whole index in RAM is ideal but only works for very small data sets.

For most practical datasets, the chunk index is too big to fit in RAM and therefore the

index lookup must go to disk. The system incurs longer latency as a result of the costly

www.manaraa.com

13

disk I/O. However, a large chunk index is necessary to allow for Petabyte/Exabyte scale

storage capacities.

The public cloud environment presents additional challenges that a deduplication

backup system must address. In this environment, the backup system may have to serve

hundreds of thousands of concurrent backup clients (ranging from enterprises to private

individuals). Therefore, the main issues are that of scalability and throughput. The system

has to scale to handle numerous concurrent users (i.e., very lager chunk index). In

addition, the storage capacity of the system has to be very large (Petabyte/Exabyte scale)

due to the number of users. Therefore, a scalable solution should allow for a large index

while maintaining high fingerprint lookup throughput.

Various schemes [19, 20, 21, 22, 23] to address the disk I/O problem and improve

the throughput of finger print lookups have been proposed. ChunkStash [19] is a flash-

assisted inline deduplication scheme that makes use of SSD’s good random-read

properties to avoid disk I/O latency. It uses flash-aware data structures and stores the

chunk index on flash. Each index lookup on flash is served only by one read operation.

However, by keeping only a compact index in RAM, the raw storage capacity is limited.

In addition ChunkStash does not deal with the problem of scaling to hundreds of

thousands of concurrent backup requests.

Zhu et al [20] achieves high cache hit ratios and avoids 99% of disk accesses by

using three techniques: a compact in-memory data structure for identifying new

www.manaraa.com

14

segments, stream-informed segment layout, and locality preserved caching. However, the

centralized chunk index is still a bottleneck when used in a public cloud environment.

Sparse Indexing [21] avoids the need for a full chunk index by using sampling

and exploiting the inherent locality within backup streams to address the chunk-lookup

disk bottleneck problem for large-scale backups. However, this does not use a distributed

chunk index.

Most deduplication techniques [18, 19, 20, 34] require locality in backup datasets

to provide reasonable throughput. Extreme Binning [21] takes a different approach by

proposing a scalable deduplication technique for non-traditional backup workloads that

exploits file similarity instead of locality to make only one disk access for chunk lookup

per file. The work assumes no locality among consecutive files in a given window of time

and therefore addresses datasets for which locality-based techniques perform poorly.

Dedupv1 [22] uses an SSD-based index system to optimize throughput. It takes

advantage of the good random-read operations of SSDs to improve disk I/O performance.

It avoids random writes inside the data path by delaying much of the I/O operations.

Maintaining the chunk index on a single server or as a centralized resource

presents a performance bottleneck when scaling to hundreds of thousands of concurrent

backup clients. While the above approaches reduce the latency of index lookups, none of

them considers a distributed architecture of the chunk index, which, as we demonstrate,

helps address the issues of scalability and throughput for deduplication-based backup

systems in public cloud environments.

www.manaraa.com

15

In order to establish this point, we developed a simulator and compared the

throughput of a centralized fingerprint store (chunk index) approach to the clustered

approach. For different number of nodes in the cluster, where one node represents the

centralized approach, we issued hash queries at varying rates. The hash queries used were

SHA-1 [13] fingerprints computed from 8KB data chunks. As shown in figure 2.2, the

execution time decreases as we increase the number of nodes in the cluster for a given

number of requests per unit time. This indicates the scalability of the distributed

approach.

Figure 2.2: Throughput of fingerprint lookup operations

To address the chunk index throughput and scalability problem in cloud backup services,

we propose a highly scalable and low latency hybrid hash cluster whose details we

www.manaraa.com

16

present in chapter 3. It works in concert with other flash-based index lookup techniques

that reduce disk I/O latency for index lookups.

2.2 Restore performance for WAN connected

deduplication-based cloud backup clients

The Storage Networking Industry Association (SNIA) formed a special interest group in

2010 called Cloud Backup Recover & Restore (BURR) to focus on interoperability,

solutions, best practices, and standards requirements for cloud backup, recover and

restore. One of the cloud BURR user requirements [9] is that any cloud backup system

should be able to provide fast recoveries locally. However, limited wide area network

(WAN) bandwidth, poses a challenge on cloud backup services that have to transmit

large amounts of data while satisfying the requirements of the ever shrinking backup

windows and recovery time objectives. While the amount of digital data that needs to be

backed up is growing rapidly and cloud computing popularity has been increasing

steadily, the WAN link speeds have not experienced a corresponding growth. High speed

network connectivity is either prohibitively expensive for most users or reserved for

special applications. Results of a recent survey [8] in which 87% of enterprises rank the

ability to recover data in a quick and effective way as very important underscores the

importance of providing fast recoveries locally.

Despite a lot of active research in deduplication-based backup by the research

community, relatively little attention has been paid to optimizing restore operations over

www.manaraa.com

17

the WAN. One reason for this could be because most deduplication-based backup

solutions are designed with offsite disaster recovery (DR) in mind. In offsite DR, data is

backed up to a remoter repository (site) where the businesses can temporally relocate in a

disaster situation. In this case, restoring data over the WAN is not a consideration as the

user would recover from the remote site were the data is located.

However, not all disasters that cause complete data loss necessitate the relocation

of business operations. Furthermore, in a typical cloud backup (especially in the public

cloud) scenario, the user backs up to the cloud storage but the recovery site is located

elsewhere at the user site or device. Therefore, it has become increasingly important, and

thus a BURR user requirement, for a cloud backup service to provide fast recoveries

locally. This entails restoring over the WAN.

Restore operations are not performed as frequent as backup operations. However,

the demand for shorter restore time is more stringent than the demand for shorter backup

window. This is because backup operations are usually pre-scheduled whereas most

restore operations are never planned. If a disaster happens, it does so unexpectedly and

disrupts business operations and necessitates restore. Therefore, the restore operation is

usually a remedial or reactive operation, which is undertaken to restore the business

operations. To minimize the negative effects of a disaster, the business or an individual

wants to recover in the shortest possible time and therefore, making the requirement for

shorter restore times more stringent. Backup is not the primary goal of a backup system

but the means to the goal, which is the ability to restore the backed up data in a timely

manner.

www.manaraa.com

18

With the popularity of cloud computing and therefore cloud backup services, it is

important to pay critical attention the restore performance over the WAN. Removing

redundant data and/or compressing data before transmission over the WAN during the

backup operation helps in improving bandwidth utilization and thus improves the backup

performance. Likewise, removing redundant data from transmission over the WAN is one

solution that can improve restore performance. Furthermore, by reducing the amount of

data sent into and out of the cloud, the user can cut down on service monetary costs.

Various techniques to improve network throughput over low bandwidth links

have been proposed. The low-bandwidth network file system (LBFS) [15], uses content

defined chunking to exploit similarity between files or versions of the same file to save

bandwidth for low bandwidth networks. TAPER [16] synchronizes a large collection of

data across multiple geographically distributed replica locations using four pluggable

redundancy elimination phases to balance the trade-off between bandwidth savings and

computation overheads. It presents a multi-vendor interoperable universal data

synchronization protocol that does not need any knowledge of the system’s internal state

to determine the version of the data at the replica. Shilane et al [18] builds upon the work

in DDFS [19] to add stream informed delta compression to a deduplication system in

order to not only eliminate duplicate regions of files but also compress similar regions of

files. However, the emphasis of the study is on the replication of backup datasets in

which backups are replicated from a backup server to a remote repository. It is silent on

the application of the scheme to accelerate WAN based restores. Our work can benefit

from delta replication to further compress data before transmission.

www.manaraa.com

19

CABDedupe [1] captures the causal relationship among versions of dataset to

remove the unmodified data from transmission not only during the backup operation but

also during restore. To the best of our knowledge, this was the first deduplication scheme

to specifically address restore performance for cloud backup services. However, the

scheme only covers scenarios in which part of the data to be restored exists on the client

after a disaster. The authors demonstrate that this is the case for about 23% to 34% of the

data loss scenarios, mostly from virus attacks. However, there are cases of complete data

loss even within the percentages shown above. Therefore, the scheme doesn’t cover more

than 77% of data lost scenarios. Given that background, we were motivated to build a

solution focused on restore performance over the WAN that assumes complete data loss

at the client and therefore can be applied to all data loss scenarios.

Our solution combines the elimination of redundant data and phasing the restore

process to improve performance. The objective is to have a simple and efficient solution

that is loosely coupled from the cloud storage backend. Loose coupling does not only

simplify server and client implementation but also helps satisfy the BURR user

requirement that a user should not be ‘locked in’ to one service provider. We achieve the

loose coupling by using file recipes at the client.

In addition to the elimination of redundant data, we take advantage of the fact that

not all data is needed at the same time and restore data in phases, with critical (i.e., more

important and time-urgent) data first. This reduces the amount of data being restored at

any particular instance. Removing redundant data improves effective bandwidth

throughput and phasing the restore presents an appearance of quick restoration time as

www.manaraa.com

20

the user is able to get back to business even though not all the data has been restored.

With 70% of enterprises ranking the ability to easily and centrally select the appropriate

data for backup as very important [8], such a strategy is workable and this is underscored

by the fact that most organizations categorize up to 48% of their data and applications as

mission critical [11].

To address the restore performance, we propose a simple, efficient and loosely

coupled Application-Aware Phased Restore (AAPR) client, whose details we present in

chapter 4.

www.manaraa.com

21

Chapter 3

SHHC: A Scalable Hybrid Hash Cluster for

Cloud Backup Services

3.1 Introduction

The 2011 digital universe study [4] predicted that in 2011 alone, the amount of digital

information created and replicated would be more than 1.8 zettabyte (1.8 trillion

gigabytes). A 2010 study [3] indicates that by the year 2020, the amount of digital

information created and replicated in the world will grow to almost 35 billion terabytes. It

further indicates that nearly 75% of digital information is a copy, i.e., only 25% is unique.

Therefore, data deduplication emerges as a natural solution to storing such amounts of

data due to its space and bandwidth utilization efficiency. With the advantages’ of the

economics of scale provided by the cloud computing paradigm, it becomes attractive to

host data storage services like backup in the cloud. Cloud-based backup services

significantly benefit from deduplication because of the redundancy that exists between

successive full backups of the same dataset.

However, for backup services that use inline, chunk-based deduplication schemes,

the chunk index presents a throughput bottleneck to the whole operation. For most

practical backup datasets, the index becomes too big to fit in RAM, forcing index queries

www.manaraa.com

22

to go to the disk and thus incurring costly disk I/O penalties. Several solutions to the disk

I/O problem and improving deduplication throughput have been proposed. However,

scalability in both the storage capacity and the number of concurrent backup requests

remains an issue in public cloud environments. In a typical public cloud environment, a

backup service will have to handle hundreds of thousands of concurrent backup requests.

This chapter presents our approach to addressing the scalability and throughput

problems of deduplication-based public cloud backup services. We propose a Scalable

Hybrid Hash Cluster (SHHC) to host a low-latency distributed hash table for storing

hashes. SHHC is a distributed hash store and lookup service that can scale to handle

hundreds of thousands of concurrent backup requests while maintaining high fingerprint

lookup throughput.

The rest of this chapter is organized as follows. Section 3.2 presents the design

and implementation. We present our evaluation in section 3.3 and summarize the chapter

in section 3.4.

3.2 Design and Implementation

3.2.1 Overall Architecture

Owing to huge amounts of data and the large number of users for public cloud backup

services, SHHC is designed based on the following design considerations:

www.manaraa.com

23

(i) The system should handle a large number of hash requests coming from different

clients simultaneously. The objective, therefore, is to scale the chunk index to

handle hundreds of thousands of concurrent backup requests while maintaining

high fingerprint lookup throughput.

(ii) The system should accommodate very large datasets.

(iii) The system should use multiple backend storage nodes and the chunk index

should be global - while the cluster is distributed, the hash table has a global view

of the backend storage and, therefore, each chunk stored in the system is unique

across all storage nodes. The global view eliminates the storage node island effect

[28] in which duplicate data exists across multiple storage nodes.

The basic idea of our solution can be outlined as follows:

a) Instead of using a single hash node or a centralized chunk index, we use a hash

cluster and distribute the hash store and lookup operations

b) Store the chunk index on solid state drives (SSD) and take advantage of the fast

random-read property of SSDs to avoid the disk I/O issue. Several studies have

demonstrated that the index can be accessed efficiently on SSD. Therefore, we

can treat RAM/SDD as a large “hybrid” RAM without a heavy performance

penalty. Due to SSD sizes, “hybrid” RAM is larger and cheaper per byte than

traditional RAM. We can therefore support a much larger chunk index. This is a

core feature of SHHC, hence the “hybrid” in the acronym.

c) Use a suitable in-ram data structure for indexing the hash store

www.manaraa.com

24

Figure 3.1 shows the overall architecture of the proposed cloud-based back-up service.

Cloud Storage Service (e.g. Amazon S3)

Hybrid memory

(RAM + SSD)

Hybrid memory

(RAM + SSD)

Hybrid memory

(RAM + SSD)

Scalable Hybrid Hash Cluster (SHHC)

Web Front-End . . .

Clients

(Client Application)

sha-1

New Chunks New Chunks

sha-1

sha-1

HTTP Load Balancer (HAProxy)

Node 1

Node 2

Node n

Web Front-End Web Front-End

Figure 3.1: Overall architecture of the cloud-based back-up service

Our solution consists of four major components, the client application, web front-end

cluster, hybrid hash cluster and the cloud backend storage.

3.2.1.1 Client application

This is an operating system specific application installed on a client device. It collects

local changes to data, calculates fingerprints and performs hash queries. The chunk index

is hosted in the hash cluster in the cloud. For each fingerprint computed, the client sends

www.manaraa.com

25

a hash query to the hash cluster to determine if the hash already exists in the chunk index

or not. The presence of a matching hash in the hash store means that the chunk data

corresponding to the hash is already stored in the system. If the chunk doesn’t already

exist in the system, the client considers the chunk data represented by the hash as a new

chunk that has not yet been backed up and sends it to the cloud for backup. SHHC

assumes source deduplication in which chunking and fingerprinting are performed by the

client.

3.2.1.2 Web front-end cluster

This is a highly scalable cluster of web servers that acts as an entry point into the cloud

for the client. It responds to requests from the clients and generates an upload plan for

each back-up request by querying hash nodes in the hash cluster for the existence of

requested data blocks. If the data chunk is new, i.e., it doesn’t exist in the system, the web

cluster sends the new data blocks to the cloud backend for storage. One characteristic of

backup datasets is that they exhibit a lot of locality among full backups of the same

dataset [18, 19, 20]. To take advantage of this locality and data redundancy, the web

cluster aggregates fingerprints from clients and sends them as a batch to the hash cluster.

3.2.1.3 Hybrid hash cluster

This is a novel scalable, distributed hash store and lookup service that can scale to handle

hundreds of thousands of concurrent backup requests while maintaining high fingerprint

lookup throughput. It is designed to be scalable, load balanced and of high fingerprint

www.manaraa.com

26

store and lookup throughput. It can be considered as middleware between the cloud

storage backend and the client.

As shown in Figure 3.1, we have designed the system using a multi-tier

architectural model. The main idea is to separate the distributed hash cluster from the

cloud storage backend. This separation offers several advantages, including:

 A highly optimized and scalable fingerprint storage and lookup mechanism.

 Functionality and resources can be added transparently to the cluster. For

example, the hash cluster can transparently be scaled to thousands of nodes.

 Reduced network traffic to the cloud storage backend.

 As a specialized hash engine service, SHHC can connect to and work with any

cloud storage service provider.

3.2.1.4 Cloud storage service

This is a cloud based multi-node storage backend for storing backup data.

3.2.2 The hybrid hash cluster

The hybrid hash cluster is a cluster of nodes hosting a low-latency distributed

hash table for storing hashes. It’s a hash engine designed for fingerprint store and lookup

and keeps a global view of the backend storage. By using a low-latency distributed hash

table (DHT) [31], SHHC can scale to handle numerous concurrent backup clients while

maintaining high fingerprint lookup throughput.

www.manaraa.com

27

Like the Chord [29], SHHC consists of a set of connected nodes, of which each

holds a range of hashes. However, SHHC differs from the Chord in that, while the latter

was designed for highly unstructured peer-to-peer environments, the former runs in a

stable, structured and relatively static environment.

Apart from a distributed hash table, the other core feature of SHHC is its use of

hybrid memory. Each node is made up of RAM and SSDs as shown in Figure 3.2. SHHC

treats RAM/SDD as a large “hybrid” RAM without a heavy performance penalty. Due to

SSD sizes, “hybrid” RAM is larger and cheaper per byte than traditional RAM. We can

therefore, support a much larger chunk index.

Write Buffer

LRU cache

Bloom–DB path table

new fingerprints

RAM

SSD

Hash table

.

.

.

Write Buffer

LRU cache

Bloom–DB path table

new fingerprints

Hash table

.

.

.

Write Buffer

LRU cache

Bloom–DB path table

new fingerprints

Hash table

.

.

.

Node 1 Node 2 Node n

...

Figure 3.2: Hash node memory layout

In the current implementation, the hash table is stored on SSD as a Berkeley DB

with a bloom filter used to represent membership of hashes in the DB. We keep a

www.manaraa.com

28

<bloomfilter, DB> path in RAM. In order to accelerate hash lookup, we also maintain an

in-RAM least recently used (LRU) cache for hashes. While SSDs have good random read

properties, their random write performance is not equally good. To hide the random write

weakness of SSDs, we use a write buffer in RAM. All the incoming hashes that are

unique are added to the write buffer and when the write buffer is full, the hashes are

written to SSD. Batching and delaying writes [22] to SSDs in this manner masks the

random write performance weakness.

Figure 3.3 shows the workflow of an SSHC lookup operation. A typical hash

lookup operation follows the following steps:

 Through the web front-end cluster, the client sends a fingerprint (SHA-1) to a

corresponding hash node N.

 Node N attempts to locate this fingerprint in main memory. If it exists, node N

informs the client that the data block indentified by this fingerprint has already

been stored.

 Otherwise, a read miss is triggered. Node N then tries to locate this fingerprint in

the hash table on SSD. If this fingerprint exists on SSD, node N loads it into the

least recently used (LRU) cache in RAM and replies to the client. Otherwise node

N writes a new entry in the hash table on SSD and notifies the client that the

corresponding data does not exist in the cloud and asks the client to transmit the

data.

www.manaraa.com

29

 Node N maintains a LRU cache in RAM. If the LRU is full, it discards the least

recently used fingerprints.

YesNo

Client

Return latency

In RAM?

YesNo

fingerprint

Yes

Send to

hash node

In SSD?

Write to SSD
Read from

SSD

LRU full?

Destage

Move to LRU tail

No

Figure 3.3: Flowchart of an SHHC lookup operation

3.3 Evaluation

In our evaluation, we would like to answer the flowing questions:

www.manaraa.com

30

 Is the throughput of a distributed chunk index better than a single server (or

centralized) index?

 Does the throughput scale with the number of nodes in the cluster?

 Is the load to each hash node in the cluster balanced?

To do so, we develop a hash cluster and evaluate the throughput of different cluster sizes

by injecting fingerprints of real world workloads at different rates.

3.3.1 Experiment setup and datasets

We conduct our experiments with a cluster size of up to 5 nodes, each node with an Intel

Xeon 2.53 GHz X3440 Quad-core Processor, 4-16GB RAM, SATA II 64GB SSD and

1GB NIC. All the nodes are running GNU/Linux Ubuntu Server 10.10 and are connected

via a 1 GB/s Ethernet switch using CAT5e UTP cables. We use separate client machines

to generate and send multiple workload traffic to the cluster. The characteristics of the

workloads used in experiments are shown in Table 3.1.

Table 3.1: SHHC Workload characteristics

Workload Fingerprints % Redundancy Distance

Web Server[30] 2,094,832 18 10,781

Home Dir[30] 2,501,186 37 26,326

Mail Server [30] 24,122,047 85 246,253

Time Machine 13,146,417 17 1,004,899

www.manaraa.com

31

The time machine workload was collected from an OSX user data backed up over

six months. The chunk size for this workload is 8KB while the chunk size of the other

workloads is 4KB. In Table 3.1, % redundancy is the amount of redundancy in each

workload expressed in percentage. The distance column shows the average distance

between similar fingerprints in the list of hashes for each workload. We use this distance

as a way of determining how much locality is in each workload. Workloads with shorter

distances have higher spatial locality of data blocks.

3.3.2 Scalability and performance

We inject fingerprints of the workloads to different cluster sizes. For each evaluation, we

use two client machines to generate and send hash queries to the cluster. Each client is

implemented with a send buffer to aggregate hash queries and send them as a batch to the

cluster. We evaluate the cluster performance with different client batch (send buffer)

sizes. Batching queries before sending them to the cluster has a twofold advantage: i) it

improves network bandwidth utilization and, ii) it preserves spatial locality of hash

requests that are sent to the cluster. Spatial locality in backup datasets improves

deduplication [18].

Figure 3.4 shows the overall throughput using batch sizes 1, 128, and 2048 per

request. Batch size 1 represents the case when there is no batching used. Results show

that batching improves throughput for all configurations of the cluster. Furthermore,

throughput for lager batches is significantly better than the case without batching.

www.manaraa.com

32

Figure 3.4: Scalable throughput

3.3.3 Load balancing

In evaluating load balancing, we analyze the hash table entries stored in each hash node

for each workload. The percentage of the number of hashes stored in each node is as

shown in Figure 3.5. The results indicate that our scheme is load balanced, with each

node getting about 25% of hash requests for a four-node cluster.

147,936.39

171,319.88

191,700.94

209,582.24

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

1 2 3 4 5

T
h

ro
u

g
h

p
u

t
(C

h
u

n
k

s/
se

c
)

No. of Nodes

Batch Size = 1

Batch Size = 128

Batch Size = 2048

www.manaraa.com

33

Figure 3.5: Hash distribution

3.4 Summary

Hosting storage services, such as backup, in the cloud has become very attractive due to

the advantages offered by the cloud computing model. However, with the huge volume,

high velocity and great variety of data to be stored, such services face various challenges.

Data deduplication emerges as an efficient scheme to use in cloud backup storage

systems as it reduces storage capacity requirements and also optimizes network

bandwidth utilization. But for deduplication-based cloud backup services, the chunk

index becomes a bottleneck to the throughput of the system. When the chunk index

becomes too big to fit in RAM (a common scenario for most practical data sets), the

index queries are forced to go to disk and thus incurring disk I/O penalties.

0

5

10

15

20

25

30

35

40

Web Server Home Dir Mail Server Time Machine

W
o

rk
lo

a
d

 P
er

ce
n

ta
g

e(
%

)

Workloads

node1 node2

node3 node4

www.manaraa.com

34

While solutions to address the disk I/O problem and improve deduplication

throughput have been proposed, scalability of both the storage capacity and the volume of

concurrent users remains an issue in public cloud environments.

In this thesis, we propose the Scalable Hybrid Hash Cluster (SHHC) which is

able to scale to handle huge volumes of concurrent backup requests while maintaining

high hash lookup throughput. Evaluation results show that the hash cluster is consistently

scalable as the number of cluster nodes increases.

www.manaraa.com

35

Chapter 4

AAPR: Application-Aware Phased Restore

4.1 Introduction

While there is a rich body of research on deduplication-based backups, much of it is

focused on the backup operation and relatively little attention has been paid to the restore

process, specifically restore over the wide area network (WAN) for cloud backups. With

the use of cloud backup services becoming increasingly popular, the low WAN

bandwidth presents a drawback in the use of such services as it negatively impacts restore

times. One solution would be to increase bandwidth to boost network throughput in order

to satisfy the need for fast restores over the WAN. However, this is prohibitively

expensive. A more economical alternative that emerges is removing redundant data

and/or compressing data before transmission, not only during the backup operation, but

also during the restore operation. This does not only improve effective bandwidth

throughput but also reduces cloud usage costs by reducing the amount of data sent into

and out of the cloud. Another way to make use of low bandwidth effectively stems from

the observation that most organizations don’t need all the data to be restored at the same

time in order to revive the disrupted business operations – instead they only need critical

data first. Therefore, it is intuitive to restore data in phases, starting with critical data,

www.manaraa.com

36

thereby shortening what would otherwise be longer restore times. Once the critical data is

restored the business can resume its operations.

This chapter presents AAPR: Application-Aware Phased Restore, which is a

simple, effective and loosely coupled restore solution for deduplication-based cloud

backup clients. The solution combines the elimination of redundant data and phasing the

restore process to improve performance. The objective is to have a simple and efficient

solution which is loosely coupled from the cloud storage backend.

The rest of this chapter is organized as follows. Section 4.1.1 describes the

concept of file recipe and the elimination of redundant data from datasets. It also

discusses the categorization of application awareness. Section 4.2 presents the design and

implementation. We present our evaluation in section 4.3 and the summary in section 4.4.

4.1.1 Eliminating redundant data in restore datasets

4.1.1.1 File Recipes

Central to our solution is the concept of file recipes [5]. A recipe is a synopsis of a file

which, among other things, contains a sequence of SHA-1 fingerprints that identify all

the chunks of data that belong to the file. Each hash uniquely maps to a particular chunk

in the file. A file recipe forms the blueprint of a file. Our work is inspired by the

observation that as a blueprint of a file, a file recipe contains a lot of information that can

help in efficient WAN restorations. When used in a deduplication restore process, a

www.manaraa.com

37

recipe presents several advantages including, i) allowing us to perform intra-file (intra-

recipe) and inter-file (inter-recipe) redundancy elimination without handling the actual

files or actual the dataset, ii) preserving the chronological order of bytes in the original

file because the fingerprints in a recipe are arranged in a sequence. This helps with the

reconstruction of the file. iii) client-side processing with minimal computation overhead

since the total size of file recipes is very small compared to the actual dataset and, iv)

recipes allow for loose coupling between the cloud backup client and the cloud backend

storage. The client doesn’t have to have a lot in common with the server. For example, to

reconstruct a file, the only ‘ingredients’ needed for the recipe from the cloud are data

chunks with the corresponding hashes they are mapped to. This simplifies both the client

and server implementations.

We conducted experiments on some datasets to investigate the space overhead of

file recipes. As shown in Table 4.1, the total size of the file recipes for a given dataset is

very small and therefore, this makes it easy to store and manage them. We applied

different chunking methods, content defined chunking (CDC) and fixed size chunking

(FSC), to each dataset to see how the size of recipes is affected by the chunking method.

Results show that, in general, for both types of chunking the total size of recipes is very

small compared to the sizes of the actual dataset.

www.manaraa.com

38

Table 4.1: Relationship of total recipe size to the dataset size

Dataset Size(KB)
Recipe

Size(KB)

Recipe size

percentage

Virtual Machines (FSC) 226,073 552 0.2441

Virtual Machines (CDC) 226,073 294 0.1301

Video files(FSC) 7,321 18 0.2441

Video files(CDC) 7,321 9 0.1236

During the restore process hashes from the recipes for the files in the restore dataset

are compared in order to eliminate redundant data. Figure 4.1 shows a sample of a file

recipe. For clarity a hash is represented in hexadecimal format in this figure. In the actual

implementation we store and manipulate the hashes as raw 20 byte fingerprints.

Furthermore, file metadata information such those found in UNIX/LINUX struct stat can

be added to the recipe as needed.

file name: /home/data/sample_file.pdf

backup time: 1331052002

No. of hashes: 15

af9626759adfcce6a003ae4df62e2a4953e1b44f

52d800af6db3f879fb8233ecfa88b975d0cd8ae5

ab5e5d9a339af7c3c102e7c543a453396acaca98

1fbb2ad365b42431fa41abf887ae74ef60b45923

a5852208f5b0212c29ff044ab6e1a23a4c1e9b5d

9f3f868920f2b8e516846dffc19648d9131e03f4

b503ca33070fda0448d845c98120b67581ca2f10

1b2ac70ecb94f8a320a72221b1c6d01927f30a8b

745af2e6587c612ddf8b0708c0c5b2a654b1a175

6715d18eff88007ff476e2e575c8b5147d112826

9bafe36fac10e46e6cf4f1e046bbef363f0db8bf

01e0943ecf9bd2a62237659e9d718dc1ec265c71

1ca9e1baec697c619a4aaed7d0019748d50e80cb

9fab497a8b26852177197e21c5da4b842160e346

ca39e05d8b07b6c92b99e9743ac501be8b09cd1f

Figure 4.1: Sample file recipe

www.manaraa.com

39

4.1.1.2 File set redundancy

The other critical concept to AAPR is that of file set redundancy. We define a file set as a

collection of files marked for backup/restore. It can be made up of a single file or

multiple files. We broadly divide file redundancy into three categories: i) intra-file set

redundancy - redundancy within the file set, ii) redundancy between versions (sessions)

of the same file set – for example, redundancy between two or more backup/restore

sessions of the same file set, and iii) inter-file set redundancy - redundancy between two

or more file sets or streams of data. We make use of the observation that there exists

redundancy within a particular file set - intra-file set redundancy. The importance of

intra-file redundancy to this solution is that redundant data can be removed from the file

set and the client can only request for unique chunk data from the cloud. To make the

case for existence of intra-file set redundancy, we performed some experiments on some

datasets. Results are shown in figure 4.2. and Table 4.2.

Table 4.2: Redundancy in single files

File Set Size
Total

hashes

Unique

Hashes

%

Redundancy

Ubuntu 11.10 server (iso) 683MB 87,334 87,075 0.2966

sample.mp4 117MB 14,243 14,237 0.0421

sample.pdf 262KB 33 33 0.0000

sample.mp3 30MB 3,762 3,762 0.0000

linux-2.5.75.tar 177MM 22,564 22,553 0.0488

www.manaraa.com

40

Figure 4.2: Intra-file set redundancy

In general, there isn’t significant redundancy within a single file. This could be

because current chunking methods are not able to extract much redundancy within a

single file. However, recent studies [12] have revealed that modern files are actually not

single files as they known to be; instead certain types of files are actually file systems.

The findings in that research have strong implications on the design of next generation

cloud-based storage systems. We therefore, foresee new schemes that will take advantage

of such findings to extract more redundancy in single files. This will be beneficial

especially for private individual cloud users whose datasets are not large. Since AAPR

depends on intra-file set redundancy, it may not perform well on single file restores.

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

All v2 & v3 linux

kernels(105GB)

Virtual Appliances(231GB) Time machine(105GB)

N
o

.
o

f
h

a
sh

es

Data Set

Total hashes

Redundant hashes

www.manaraa.com

41

On the other hand, restoring single files is not the common case especially for the

enterprise. An organization will usually backup or restore multiple files, which as

demonstrated exhibit significant intra-file set redundancy.

4.1.1.3 Unique hash store

Following the results from figure 4.2 and since a file can be represented by a file recipe,

we collect the hashes from the file recipes of all the files in a dataset and generate a

unique hash store containing unique hashes only. This process is performed locally on the

client side, after which chunk data from the cloud is request only for the hashes in the

unique hash store. As described later, when the restore is phased, the size of the hash

store is small enough to be maintained in RAM. In order to simplify the implementation

while guaranteeing the correctness files restored, our implementation first builds a

complete repository of all unique data chunks collected from the cloud before beginning

the reconstruction. The local chunk repository is only needed during the restore process.

4.1.1.4 Application awareness

We further exploit application awareness to restore critical data first. This is archived by

making the backup/restore client aware of what critical data is and then phasing out the

restore process to restore the critical data first. Critical data is determined based on the

application – hence application awareness.

Recovery point objective (RTO) is defined as the amount of time between the

moment a disaster happened and the time the business functions are restored. Therefore,

www.manaraa.com

42

it can be argued that RTO is satisfied by restoring what is essential to get the business

back in operation.

4.1.1.5 Categorizing application awareness

In this thesis we define application awareness from two perspectives: system-level

awareness and file-level awareness.

System level looks at the type of application, for example an email system. For an

active web based email system, restoring inboxes for active and inactive users at the same

time would unnecessarily lengthen the RTO for critical email boxes. Restoring emails for

active users first and completing the rest of the restore in a ‘staggered fashion’ would

satisfy the RTO in a more efficient and economical way. Even if not all inboxes are

restored at the same time, the experience of the active users (and those are the ones that

matter most at that time of restore) would be that of having experienced fast recovery.

Furthermore, webmail systems such as gmail already have an option for the user to rank

emails according to importance. Incorporating such awareness in restoring data for such a

system may help improve the ‘apparent restore’ time for users.

File level application awareness deals with the type of files and file activity. For

some users multimedia files might be more critical in restoring business operations than

ordinary document files. On the other hand, files with certain file extensions might be

more critical for some users than other file extensions. In some systems, file access time

www.manaraa.com

43

might give an indication of how frequently certain files are used and hence their

popularity. Typically it would be beneficial to restore more popular files first.

A five year study of file system metadata involving over 60000 Windows PC file

systems found a significant temporal trend relating to, among other things, the popularly

of certain file types[14]. The study indicates that eight filename extensions accounted for

over 35% of files and nine filename extensions accounted for more than 35% of the bytes

in the files and that these extensions remained popular for many years. The study further

reveals that in more than 60% of the file systems considered, over 80% of files had never

been changed since they were copied into the file system. A conclusion can be drawn that

not all files in a given system are critical at the same time, and this indicates a need for

application awareness in backup applications. Exploiting such application awareness can

help restore the business back to operation quicker than otherwise.

4.2 Design and Implementation

In this section we present the architecture of AAPR: Application-Aware Phased Restore.

AAPR employs source deduplication using the fixed chunking method. The

implementation can broadly be divided into two parts, the server and the client. The client

performs the fingerprinting and hash calculation while the server hosts the chunk index

and the data store for storing all the unique chunks sent by the client. Figure 4.4 shows

the overall system architecture. The details of the major system components are described

below.

www.manaraa.com

44

Recipe StoreAA ModuleBackup
Catalogue

Unique hash
store

Unique
chunk store

Local Chunk
Index

Restore Agent

Backup Agent

AAPR Client

 Chunk
Index

Container
Cache

Containers

Server

Figure 4.4: AAPR System Architecture

4.2.1 AAPR client

The AAPR client comprises the backup agent and restore agent as shown in figure 4.3.

4.2.1.1 Backup agent

The backup agent is responsible for chunking, fingerprinting and sending data to the

storage server. It also generates file recipes for all backed up files. To backup data the

backup agent performs several operations as follows.

www.manaraa.com

45

 It takes a file from the backup dataset and splits it into 8KB chunks using the

fixed size chunking algorithm and calculates a SHA-1 fingerprint for each chunk.

 For each chunked file, the backup agent generates a file recipe, keeping a

sequence of all hashes that belong to the file in the order in which the chunks

appear in the file. When the chunking and fingerprinting is complete, the recipe is

saved in the recipe store.

 To determine whether a given chunk has already been sent to the server or not, the

agent checks the local chunk index and buffers the <hash-chunk> pair if the

chunk is not a duplicate. It’s important to maintain a chunk index at the client side

to avoid sending unnecessary queries to the server. Otherwise the client would

have to send a query to the server to establish whether or not a chunk exists even

for chunks that have previously been sent. This wastes bandwidth especially for

datasets that exhibit a lot of redundancy.

 Each unique chunk is paired with its corresponding hash and the <hash-chunk>

pairs are batched and sent to the server.

 When the backup operation is complete the backup agent generates a backup

catalogue containing all the files that have been successfully backed up. The

application awareness module (AA module) then generates a list of all the files in

the catalogue that are critical and will need to be restored first.

At the server-side the server checks for existence of each of the received chunk. Note that

in a real world scenario the server would be handling requests from other users.

Therefore, an incoming chunk from one client may already be present in the backend

www.manaraa.com

46

storage. In our implementation, if the chunk already exists, the server simply drops the

hash-chunk pair. The server doesn’t have to return any chunk location or reference

information to the client. Since the reconstruction information is kept in the recipe at the

client side, the server will only need to respond with the requested fingerprint and its

corresponding data chunk at restore time.

4.2.1.2 Recipe store

The recipe store is responsible for storing all the recipes for the files. We have

implemented it as a Berkley DB [25] key-value hash table indexed by a file name.

4.2.1.3 Application awareness module (AA Module)

The application-awareness module determines which files are critical. As earlier

described, application-awareness can vary depending on the system and the user. In this

thesis, we have used access time to determine critical files. Files from the backup

catalogue whose access time is newer than a certain time are considered critical and put

on the critical list. In our experiments, we randomly modify access time for 20% of files

in the dataset. This is based on the fact that in more than 60% of the file systems

considered by Agrawal et al [14], over 80% of files had never been changed since they

were copied into the file system. Therefore, we can safely estimate that based on access

time, only about 20% of the files in our scenario are critical. While it’s possible to

manually select which files are critical, it is clear that doing so is not only inefficient but

also not scalable especially for a large size dataset with a larger critical data size.

www.manaraa.com

47

4.2.1.4 Restore agent

The restore agent is responsible for getting data chunks from the server and

reconstructing files. It works in conjunction with the backup catalogue, the AA module

and the recipe store to complete its operations. By using file recipes, AAPR avoids the

use of chunking and fingerprint in the restore operation. In order to restore data the

restore agent performs several operations as follows.

 The restore agent gets a list of files to restore from the backup catalogue or the

critical list(when using application awareness)

 For each file, the agent retrieves a file recipe from the recipe store. It gathers the

fingerprints from the file recipes and queries the unique hash store to determine

whether each of those hashes is unique or not. Unique hashes are inserted in the

unique hash store and also batched for sending to the server.

 Upon receiving the chunks from the server, the client stores each chunk in the

local chunk store. The chunk store only keeps unique chunks.

 When all the chunks have been received, the agent starts to reconstruct the files.

Deferring the file reconstruction until all the chunks have been received has

several advantages including ease of implementation of the reconstruction logic.

The reconstruction can also easily be parallelized with guaranteed correctness

since all the operations on the chunk store are read operations.

Note that with application awareness, the critical files are restored first and the above

steps are repeated for the remainder of the files.

www.manaraa.com

48

4.2.1.5 Unique hash store

The unique hash store is responsible for storing all the unique hashes form the file

recipes. For the size of datasets used in our experiments, we maintain this as an in-RAM

data structure. Other efficient chunk index schemes could be used for very large data sets.

Application awareness helps to keep the local hash store to manageably smaller sizes.

4.2.1.6 Local chunk store

The local chunk store is a temporary repository of all the chunks retrieved from the

server. With current storage drive capacities it’s easy to allocate space at the client for

this purpose. Besides, the chunk store is only temporary and is needed only during the

restore time. In practice systems already use additional space for recovery, for example,

snapshots. Another example is that of Oracle 10g R2 which uses a “flash recovery area”

[26].

4.2.2 Server

The server hosts the chunk index for all clients of the cloud backup service. The chunk

index supports global, exact deduplication i.e. it’s not a sampled index and the storage

backend (all containers in Figure 4.4) have the same view of the index. Only one client is

used in our experiments. Each unique chunk is stored in a container on SSD with its

corresponding hash as a <hash, chunk> pair. The container size was set to 2048 <hash,

chunk> pair entries, giving a total size of about 16.8MB for each container. To accelerate

www.manaraa.com

49

the read performance, a container cache is maintained in RAM. Upon a miss in the

container cache, all the chunks in the container where the chunk is located are fetched

into the cache. Storing chunks as <hash, chunk> pairs in a container simplifies the

implementation of the prefetching logic. The container cache uses a least recently used

(LRU) replacement policy. If the cache is full and a container needs to be fetched, 2048

least recently used <hash, chunk> pairs are evicted from cache. The average cache hit

rate observed was about 99%.

4.3 Evaluation

In this section we present the performance evaluation of AAPR. We built a client and

server to evaluate the performance of our solution. In order to make performance

evaluations, the implementation of the restore client is such that we can run the restore

agent with or without application awareness. To use application awareness the agent uses

the list of files generated by the AA module to restore the needed files. The restore of the

remainder of the files is run thereafter.

4.3.1 Experiment setup and datasets

The experiments were conducted on a server and client with the following hardware

specifications. The server was configured with Intel Xeon 2.53 GHz X3440 Quad-core

Processor, 16GB RAM, SATA II 64GB SSD and 1GB NIC. The client had similar

configuration and both were running GNU/Linux Ubuntu Server 11.10. The client and

www.manaraa.com

50

server were connected via a 1 GB/s Ethernet switch using CAT5e UTP. The Ethernet was

rate limited to the required bandwidth in order to impose a WAN bandwidth scenario.

 We used three datasets with different redundancy characteristics as shown in

Table 4.3. The datasets consists of version 2 Linux kernels [26] and virtual machine

appliances [27]. The third dataset is a collection of user videos.

Table 4.3: AAPR Workload Characteristics

Dataset Total hashes Unique hashes Redundancy (%)

Linux kernels 383,738 44,504 88.4

Virtual appliances 703,969 585,824 16.78

Videos 937,143 937, 143 0

4.3.2 Restore time

To assess restore performance we restored each data set under different setups shown

below. We performed a full backup of each data set and restored the whole data set.

 Case 1: This setup runs the restore agent without using the unique hash store and

without application-awareness

 Case 2: In this setup, the restore agent uses the unique hash store but without

application-awareness

www.manaraa.com

51

 Case 3: This setup runs the restore agent using the unique hash store and

application-awareness

The restore times for Linux and virtual appliances workloads are shown in figure

4.5 (a) and Figure 4.5(b) In general, restore time can be divided into three categories, i)

client computer time (client time) – this the processing time in the client, ii) network time

– total transmission time and, iii) server time – processing time in the server. The

network connection between the client and the server was rate-limited to 4MB/s. In order

to evaluate the effect of application awareness, we define two important parameters:

apparent system restore time and actual system restore time. The apparent restore time is

the time it takes to restore only the critical data. It is ‘apparent’ because not all the backed

up data is restored (only the critical data) even though the user can get back to business

and thus stratifying the RTO. The actual restore time is the time it takes to restore the

entire dataset.

www.manaraa.com

52

(a) Linux kernels

0

200

400

600

800

1000

1200

1400

Without unique hash store

(case 1)

With unique hash store

(case 2)

With unique hash store + aa

(case 3)

R
es

to
re

 t
im

e
(s

)

server time

network time

client time

www.manaraa.com

53

(b) Virtual Appliances

Figure 4.5: Restore performance for different workloads

Our datasets exhibit different data redundancies. The Linux kernels have very

high redundancy; the virtual appliances have minimal redundancy while the user videos

in this case exhibit no redundancy. Figure 4.5 shows that the performance gap between a

restore client using the unique hash store (case 2) and one without a unique hash store

(case 1) is related to the redundancy in the dataset. The higher the redundancy, the bigger

the gap. In incorporating application awareness, we randomly changed the access time for

0

500

1000

1500

2000

2500

Without unique hash store

(case 1)

With unique hash store

(case 2)

With unique hash store + aa

(case 3)

R
es

to
re

 t
im

e
(s

)

server time

network time

client time

www.manaraa.com

54

20% of files in each dataset to signify critical files that were restored with application

awareness. Clearly, network time is the dormant potion of the restore time.

Figure 4.6 shows the data transmitted over the WAN for each workload. To

restore data, the restore agent sends hashes to the server and for each hash received, the

server sends back a <hash-chunk data> back to the client. Using 8KB data chunks the

total data transferred is determined as follows.

Total data = NHT*HS + NHT*(HS + CS)

Where NHT is the number of hashes sent to the server, HS is the hash size in bytes

(20 for SHA-1) and CS is the chunk size in bytes (8KB in this thesis).

As expected, the reduction in data transmitted increases with the redundancy

found in a dataset. This indicates that datasets with higher redundancy benefit more from

our scheme. The Linux workload shows more that 85% reduction in data transferred over

the WAN.

www.manaraa.com

55

Figure 4.6: Data transferred over the WAN

In the second part of our evaluation, we compared the performance of our scheme to that

of CABdedupe [1], which is the state-of-the-art. CABdedupe works by capturing the

causal relationship among versions of dataset to remove the unmodified data from

transmission. It assumes that after a disaster, part of the data will be available at the

client. Given a list of files whose content has changed since the last backup, CABdedupe

chunks the files and calculates fingerprints in order to determine which of the chunks

from the modified file remained intact at the client. If all the data is lost, the scheme has

little effect and all the data chunks for the given hashes must be retrieved from the server.

Therefore, in this scenario, we can represent CABdedupe using case 1 of our scheme in

which the client sends requests for all the hashes for a given dataset.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Linux kernels Virtual appliances Videos

T
o

ta
l

d
a

ta
 t

ra
n

sf
er

ed
 (

M
B

)

Data Set

case1: no hs

case2: with hs

case3: with hs + aa

www.manaraa.com

56

To evaluate the performance for the scenario when part of the data can be found

at the client, we implemented a simple version of the CABdedupe restore workflow. 60%

and 30% of the files in the Linux and virtual appliance dataset were randomly modified,

after being backed up, by overwriting the lower half of each file with randomly generated

data. Therefore, part of the data for each files remained intact. For both cases the network

connection was rate limited to 4MB/s.

The performance results for the Linux and virtual machine workloads are show in Figures

4.7 and 4.8 respectively. Figure 4.8 shows that AAPR is not very effective when there is

very little redundancy in the dataset e.g. 16.78% for the virtual appliance workload.

Figure 4.7: Comparison of AAPR and CABdedupe schemes – Linux workload

0

100

200

300

400

500

600

700

AAPR (60%

Modified data)

CABdedupe (60%

Modified data)

AAPR (30%

Modified data)

CABdedupe (30%

Modified data)

R
e
st

o
r
e
 t

im
e
 (

s)

server time

network time

Other client ovehead

chunk+ hash + file I/O

www.manaraa.com

57

Figure 4.8: Comparison of AAPR and CABdedupe schemes – Virtual machines

4.4 Summary

Deduplication-based cloud backup services have increased in popularity partly due to the

economics of scale provided by cloud computing. However, restore performance over

low bandwidth internet links still remains a drawback in the use of these services. While

the amount of digital data that needs to be backed up is growing rapidly and cloud

computing is becoming ubiquitous, the internet (WAN) link speeds have not experienced

corresponding growth.

Increasing bandwidth to improve network throughput in order to satisfy the need

for fast restores over the WAN is very expensive. The alternative that emerges is

0

20

40

60

80

100

120

140

160

AAPR (60% Modified data) CABdedupe (60% Modified data)

R
es

to
re

 t
im

e
(s

)
server time

network time

Other client ovehead

chunk+ hash + file I/O

www.manaraa.com

58

removing redundant data and/or compressing data before transmission over the WAN not

only during the backup operation but also during the restore operation. Given that

background, we proposed AAPR, a simple solution focused on restore performance over

the WAN. Furthermore, we exploit application awareness to restore critical data first and

thus improve the recovery point objective.

Our evaluations with real world workloads show that AAPR performs well in

reducing data transferred over the network with over 85% reduction in data transferred

for workloads with high redundancy.

www.manaraa.com

59

Chapter 5

Conclusions

In this thesis, we investigated problems relating to backup and restore performance for

deduplication-based cloud backup services. We investigated scalability and throughput

for backup operations. We have also looked at restore performance for deduplication-

based cloud backup clients. This thesis has made the following contributions:

(i) Scalable Hybrid Hash Cluster (SHHC): During the backup operation, duplicate

data is determined by first consulting the chunk index. For a lager data set, it’s not

possible to store the whole index in RAM forcing the index lookup to go to the

disk and incurring disk I/O penalties. Furthermore, in a public cloud environment

the system has to serve numerous concurrent backup requests. This puts

additional pressure on the throughput and scalability of the backup system.

Various schemes have been proposed to address the fingerprint lookup

bottleneck problem and the associated disk I/O problem. However, none have

explored the use of a distributed chunk index as a way of improving throughput

and scalability. We propose a novel Scalable Hybrid Hash Cluster (SHHC) which

hosts a low-latency distributed hash table for storing hashes. It is a distributed

hash store and lookup service that can scale to handle hundreds of thousands

concurrent backup requests while maintaining high fingerprint lookup throughput.

www.manaraa.com

60

Results show that the hash cluster is consistently scalable and the throughput

increases almost linearly with the number of nodes.

(ii) Application-Aware Phased Restore (AAPR): Deduplication based cloud backup

services have increased in popularity but low bandwidth WAN links present a

challenge to backup services that are expected to provide fast data restorations.

High speed network connectivity is either too expensive for most users or

reserved for special applications. The alternative that emerges is removing

redundant data before transmission over the WAN during the restore operation.

To this end, we propose AAPR, a simple solution focused on restore

performance over the WAN. AAPR is also loosely coupled from the cloud storage

backend. We achieve the lose coupling by using file recipes at the client.

Furthermore, we exploit application awareness to restore critical data first and

thus improve the recovery point objective. Our evaluations with real world

workloads show that AAPR is effective in reducing restore time

www.manaraa.com

61

Bibliography

[1] Y. Tan, H. Jiang, D. Feng, L. Tian, and Z. Yan. CABdedupe: A Causality-Based

Deduplication Performance Booster for Cloud Backup Services. In 2011 IEEE

International Parallel & Distributed Processing Symposium, pages 1266-1277,

2011.

[2] L. Xu, J. Hu, S. Mkandawire, and H. Jiang. SHHC: A Scalable Hybrid Hash

Cluster for Cloud Backup Services in Data Centers. In 31st International

Conference on Distributed Computing Systems Workshops (ICDCSW), pages 61-

65, June 2011.

[3] The 2010 Digital Universe Study: A Digital Universe Decade – Are You Ready?

http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-

ready.pdf

[4] The 2011 Digital Universe Study: Extracting Value from Chaos.

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-

r.pdf

[5] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp, T. Bressoud, and A. Perrig.

Opportunistic use of content addressable storage for distributed file systems. In

Proceedings of the 2003 USENIX Annual Technical Conference, 2003.

[6] http://searchcloudcomputing.techtarget.com/definition/cloud-computing

[7] http://cibecs.com/resource-center/white-papers/2010-data-loss-survey/

www.manaraa.com

62

[8] CIBECS 2011 Report: Business Data Loss Survey. http://cibecs.com/wp-

content/uploads/2011/09/Survey-2011_Aug-E.pdf

[9] Cloud Backup and Recovery Requirements. http://www.snia.org/sites/default/

education/tutorials/2011/spring/cloud/BaigAshar_Cloud_BURR_Requirements_2.p

df

[10] The Role of WAN Optimization in Cloud Infrastructures. http://www.snia.org/

sites/default/education/tutorials/2011/spring/cloud/TsengJosh_Role_of_WAN_Opt

_Cloud_3-18-2011.pdf

[11] 2010 Data Protection Trends ESG Research Report.

http://www.enterprisestrategygroup.com/2010/04/2010-data-protection-trends/

[12] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. A file is not a file: understanding the I/O behavior of Apple desktop

applications. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles (SOSP '11), 2011.

[13] NIST. Secure Hash Standard (SHS). In FIPS Publication 180-1 (1995).

http://www.itl.nist.gov/fipspubs/fip180-1.htm

[14] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A five-year study of

file-system metadata,” In ACM Transactions on Storage, Volume 3 Issue 3,

October 2007.

[15] A. Muthitacharoen, B. Chen, and D. Mazi. A low-bandwidth network file system.

In Proceedings of the eighteenth ACM symposium on Operating systems principles

(SOSP '01), 2001.

www.manaraa.com

63

[16] N. Jain, M. Dahlin, and R. Tewari. TAPER: tiered approach for eliminating

redundancy in replica synchronization. In Proceedings of the 4th USENIX

Conference on File and Storage Technologies (FAST'05), 2005.

[17] P. Shilane, M. Huang, G. Wallace, and W. Hsu. WAN Optimized Replication of

Backup Datasets Using Stream-Informed Delta Compression. In Proceedings of the

10th USENIX Conference on File and storage Technologies (FAST'12), 2012.

[18] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data domain

deduplication file system. In Proceedings of the 6th USENIX Conference on File

and Storage Technologies(FAST’08), pages 269–282, 2008.

[19] B. Debnath, S. Sengupta, and J. Li. ChunkStash: speeding up inline storage

deduplication using flash memory. In Proceedings of the 2010 USENIX Annual

Technical Conference (USENIXATC’10), page 16, 2010.

[20] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and P. Camble.

Sparse indexing: large scale, inline deduplication using sampling and locality. In

Proccedings of the 7th Conference on File and Storage Technologies (FAST '09),

2009.

[21] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge. Extreme Binning:

Scalable, parallel deduplication for chunk-based file backup. In IEEE International

Symposium on Modeling, Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2009.

www.manaraa.com

64

[22] D. Meister and A. Brinkmann. dedupv1: Improving deduplication throughput using

solid state drives (SSD). In IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), pages 1-6, 2010.

[23] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In Proceedings

of the 9th USENIX Conference on File and Storage Technologies (FAST'11), 2011.

[24] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proceedings of the

USENIX Annual Technical Conference (ATEC '99), 1999.

[25] Oracle Database Documentation Library. http://www.oracle.com/pls/db102/

homepage.

[26] The Linux Kernel Archives. http://www.kernel.org/pub/

[27] http://www.thoughtpolice.co.uk/vmware/

[28] J. Wei, H. Jiang, K. Zhou, and D. Feng. MAD2: A scalable high-throughput exact

deduplication approach for network backup services. In Proceedings of the 2010

IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST '10),

2010.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: a

scalable peer-to-peer lookup protocol for Internet applications. In IEEE/ACM

Transactions on Networking, pages 17- 32, 2003.

[30] R. Rangaswami. http://users.cis.fiu.edu/~raju/WWW/

[31] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking up

data in P2P systems. In Communications of the ACM , Volume 46 Issue 2, February

2003.

www.manaraa.com

65

[32] S. Quinlan and S. Dorward. Venti: A New Approach to Archival Data Storage. In

Proceedings of the 1st USENIX Conference on File and Storage Technologies

(FAST '02), 2002.

[33] http://en.wikipedia.org/wiki/File:Cloud_computing.svg

[34] W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: a similarity-locality based near-exact

deduplication scheme with low RAM overhead and high throughput. In

Proceedings of the 2011 USENIX Annual Technical Conference (USENIXATC'11),

2011.

.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	4-2012

	Improving Backup and Restore Performance for Deduplication-based Cloud Backup Services
	Stephen Mkandawire

	tmp.1334690056.pdf.Ylpvp

